
Gauss’ Law
Field lines and Flux
Field lines are drawn so that ~E is tangent to the field line at every point.

Field lines give us information about the direction of ~E, but also about its
magnitude, since the relative density of field lines is a measure of the relative
strength of the electric field. To measure the density, we construct a patch
of area perpendicular to the field lines, and measure the number of fields lines
passing through the patch. Then

density =
N

A

If we draw a total number N of field lines to represent the field due to a point
charge, then N field lines pass through every sphere surrounding the charge.
Thus

density =
N

4πr2

and is proportional to 1/r2, as given by Coulomb’s law. Since we can model
any charge distribution as a collection of point charges, it is true in general that
field strength is proportional to number of lines per unit area.

Since field lines begin on positive charge and end on negative charge, the
number of field lines emerging from or entering any closed box is a measure of
the net charge inside the box. This is Gauss’ law.

To get a more quantitative measure of "number of field lines" we use the
mathematical quantity flux. The flux of any vector field ~v through a surface S
is given by the surface integral

©~v =

Z

s

~v ¢ ~n dA =

Z

S

~v ¢ d ~A

where the vector di¤erential area d ~A = n̂ dA, and n̂ is the normal to that patch
of surface.

Solid angle

1



The solid angle subtended at P by a patch of surface dA is defined to be

d =
dA?
r2

=
d ~A ¢ r̂

r2
(1)

where dA? is the projection of dA perpendicular to r̂. Imagine an ice-cream cone
with the area as the surface of the ice-cream. For any closed surface surrounding
P, the total solid angle subtended at P is 4π steradians. You can see this by
replacing the area patches by pieces of a spherical surface. If we look at pieces
of spheres along the same cone, (and thus with the same solid angle) dA/r2 =
constant. so we can shift the surface pieces inward or outward as needed until
we get a complete sphere. For a sphere,

 =

Z
dA

r2
=

1

r2

Z
dA =

4πr2

r2
= 4π.

We can get an expression for d in spherical coordinates, again using a piece of
a sphere.

d =
dA

r2
=

r2 sin θdθdφ

r2
= sinθ dθ dφ (2)

or equivalently, the area element on a sphere may be usefully expressed as

dA = r2d

Gauss’ Law
Let’s see how flux of electric field relates to charge. For a closed surface S

that contains a point charge q somewhere inside it,

©E =

I

S

~E ¢ n̂dA =

I

S

kq

r2
r̂ ¢ n̂dA

= kq

I

S

d = 4πkq =
q

ε0

Here we used equation (1) and the fact that any closed surface subtends solid
angle 4π at any interior point. Now if our electric field is due to a superposition
of fields due to N point charges, we have

©E =

I

S

NX

i=1

~Ei ¢ n̂dA =

I

S

NX

i=1

kqi

r2
i

r̂i ¢ n̂dA

=

NX

i=1

kqi

I

S

d =

PN
i=1 qi

ε0
=

Q

ε0

where Q is the total charge inside S.
Now suppose that ~E is the superposition of fields due to charges both inside

and outside S. For any charge that is outside S, there is no contribution to the
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flux, This is because the fields lines run through the surface, in at one side and
out at the other, giving a positive flux at one side and a negative flux at the
other, These two contributions cancel exactly!

Thus only charge inside the surface contributes to the net flux. This result is
Gauss’ Law: I

S

~E ¢ n̂dA =
Qinside

ε0

Since we used no information other than geometry and Coulomb’s law to get this
result, there is no new physics here. However, by expressing the same physics
in a di¤erent mathematical form, we have a useful new tool. This is a global
statement about how electric field behaves over an entire surface. We can still
use this result to determine ~E locally (at a point) if we have enough symmetry.
It is necessary that the surface integral can be reduced to one component of
~E times the area of the surface. That can only be done if ~E is parallel or
perpendicular to n̂ on each surface patch, so that ~E ¢ n̂ is either zero, or equal to
one component of ~E, and that component has a constant value over the whole
surface where ~E ¢ n̂ is not zero..

To use Gauss’ Law to find electric fields we use the method outlined in
LB Chapter 24. Let’s start with the infinite line that we just looked at using
integration.

MODEL We’re going to use Gauss’ law and so we start with a field line
diagram. The system has (a) rotational symmetry about the line and (b) trans-
lational symmetry along the line. If we rotate about the line or slide vertically
along the line, the picture can’t change. Electric field lines begin at positive
charge and end at negative charge. The negative charge in this system is all
at "infinity", so the field lines start on the line and point radially outward like
spokes of a wheel with the line passing through the axis of the wheel.

SETUP We choose a surface with its pieces either parallel or perpendicular
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to ~E everywhere. This surface is a cylinder with its axis along the filament and
having a radius r and height h. Then we choose a coordinate system so that ~E
has only one component. In a cylindrical coordinate system,with z¡axis along
the filament, ~E = Er r̂ . Now we calculate the flux though this cylinder.

© =

I
~E ¢ n̂dA =

Z

t op
Er r̂ ¢ ẑdA +

Z

botto m
Er r̂ ¢ (¡ẑ)dA +

Z

curved part
Er r̂ ¢ r̂dA

= 0 + 0 +

Z

curved part
Er dA

Now here’s where the symmetry comes in. Because of the rotational and trans-
lational symmetry, the value of the component Er is the same at each point of
the curved surface, and thus we can take it out of the integral.

© = Er

Z

curved pa rt
dA = ErA = Er2πrh

The charge inside our surface is Qinside = λh
SOLVE We apply Gauss’ Law to get

Er2πrh =
λh

ε0

Er =
λ

2πrε0

ANALYZE There are several important things to note about this result. First,
the height h of the cylinder cancelled out, as it must because of the symmetry.

Second, we have found a component of ~E, not the magnitude
¯̄
¯~E

¯̄
¯ = E. The

charge density λ could be positive or negative. (We assumed it was positive
when drawling the FLD, but did not use its sign anywhere in our analysis.)
Thus Er could also be positive or negative, while the magnitude of a vector is
always positive. Thus our result tells us that field lines point outward from a
positive line but run inward toward a negative line.

The result is identical to the result we obtained by integration, so we needn’t
repeat the dimension checks etc that we did there. Note, however, that the math
is much easier here! When Gauss’ law can be used to find ~E it is by far the
easiest method. But there are only a few simple cases where it can be used at all.
These are systems that have complete spherical, cylindrical or plane symmetry.

Gauss’ law in integral form is a global statement about ~E. Now we’d like to
obtain an equivalent local statement— that is, something that is true at every
point in space. We can use the divergence theorem to do this. First we express
the charge inside the volume using the charge density ρ.

I
~E ¢ n̂ dA =

Qins ide

ε0
=

1

ε0

Z
ρ dV

The we use the divergence theorem to express the left hand side as a volume
integral: Z

~r ¢ ~E dV =

Z
ρ

ε0
dV
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Both integrals are over the same volume V, so
Z µ

~r ¢ ~E ¡ ρ

ε0

¶
dV = 0 (3)

Now in general we cannot conclude that an integrand is zero because the integral
is zero. For example,

Z +1

¡1

xdx = 0 but x is not ´ 0

However, (3) is true for absolutely any volume V at all, so the only way this
can happen is if the integrand is zero:

~r ¢ ~E ¡ ρ

ε0
= 0

and thus
~r ¢ ~E =

ρ

ε0
(4)

at every point of space. This is the di¤erential form of Gauss’ law, and is the
first Maxwell Equation.

Aside : at this point we can get the second Maxwell equation almost for
free. Remember that there is no such thing as magnetic charge, so Gauss’ law
for the magnetic field says that the magnetic flux through any closed surface is
identically zero. This leads directly to the di¤erential Gauss’ law for ~B

~r ¢ ~B = 0

We’ll return to this later in the semester.
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