Magnetic vector potential
_ When we derived the scalar_electric potential we started with the relation
V x E = 0 to conclude that E could be written as the gradient of a scalar
potential. That won’t work for the magnetic field (except where j = 0), because
the curl of B is not zero in general. Instead, the divergence of B is zero. That

means that B may be written as the curl of a vector that we shall call A.
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Then the second equation becomes
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VB =V x(VxA) =V (v 4) - V24 = p,j

We had some flexibility in choosing the scalar potential V because E = —VV is
not changed if we add a constant to V, since V (constant) = 0. Similarly here,

if we add to A the gradient of a scalar function, Ay = A, + @x, we have
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With this flexibility, we may choose V- A = 0. For suppose this is not true.
Then
Vo (4 +Vx) =V A4+ V=

So we have an equation for the function x
Vi = -V A,

Once we solve this we will have a vector A, whose divergence is zero. Once we
know that we can do this, we may just set V - A = 0 from the start. This is
called the Coulomb gauge condition. With this choice, the equation for A is

VA = _Mof 1)

We may look at this equation one component at a time (provided that we use
Cartesian components.) Thus, for the z—component

V2Ar = 7”03.1'
This equation has the same form as the equation for V'
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and thus the solution will also have the same form:
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and since we have an identical relation for each component, then
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Now remember that jdr corresponds to IdZ, so if the current is confined in

wires, the result is
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At this point we may stop and consider if there is any rule for magnetic field
analagous to our RULE 1 for electric fields. Since there is no magetic charge,
there is no "point charge™ field. But we can use our expansion
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where 7 is on the polar axis. Then

A(F=rz) = Zrm )' B (cos §') dl’
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Since the current flows in closed loops, [ ar = 0. (This result is actually more

general, because in a static situation ﬁ-] = 0, and the lines of 5 also form closed
loops.) This is the result we expected. The next term is
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The [ =0 term is

We can use Stokes theorem to evaluate this integral.

/ﬁ-df:/(ﬁxﬁ) -7 dA
Let & = ¢y where ¢ is a constant vector and y is a scalar function. Then
a/xdf - /(ﬁx EX) - AdA
/[(ﬁx) xa} hdA

We may re-arrange the triple scalar product

a-/xdT: fa*./ (W) x 7 dA



This is true for an arbitrary constant vector ¢, so, with xy = (7 - %)

/(F’-é)df’
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Note that Z can come out of the integral because it is a constant. So
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where
m = I/ﬁ’dA’

is the magnetic moment of the loop. The corresponding magnetic field is

Ho 202 o
= m[?ﬂ’(m-r)—m]

This is a dipole field. Thus the magnetic equivalent of RULE 1 is :

At a great distance from a current distribution, the magnetic
field is a dipole field

Here is another useful result:

faai= [ (9xa) o= [ Bivdo— o
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Thus the circulation of A around a curve C equals the magnetic flux through

any surface S spanning the curve.
Boundary conditions for B

We start with the Maxwell equations. Remember, if the equation has a
divergence we integrate over a small volume (pillbox) that crosses the boundary.



But if the equation has a curl, we integrate over a rectangular surface that lies
perpendicular to the surface.
So we start with V- B =10
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But because we chose h < d, the integral over the sides is negligible, and on
the bottom side dA, = —ndA, so we have

(EI—EQ)-ﬁzo (5)

The normal component of B is continuous.
For the curl equation, we use the rectangle shown:
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Rearrange the triple scalar product on the left to get

—{(él—éz)xﬁ} N = - N

Since we may orient the rectangle so that N is any vector in the surface, we
have
i x (Bi— Ba) = poK (6)

Thus the tangential component of B has a discontinuity that depends on the
surface current density K. Crossing both sides with 7, we get an alternate
version:

{ﬁx (él—ég)}xﬁ ,uolzxﬁ
(Bi—Bo) —i|n- (Bi=B)| = mok x i
But now we may make use of (5) to obtain
(El - 52) =K x 7 @

What about the vector potential? Remember that for the scalar poten-
tial V' we were able to show that V' is continuous across the surface (in most
cases). When we find A we first choose a gauge condition. The Coulomb gauge
condition is

V-A=0
and then we can use our usual pillbox trick to show that
A -7 is continuous 8)

For the tangential component, we make use of equation (4). Then, using the
rectangle,

?{z.dz — Gy =B Nuh
C
(21722)'(75)10 = B-Nwh—0 ash—0
Thus we have
A -t is continuous 9

These two result taken together show that the vector potential as a whole is
also continuous across the boundary.
Finally let’s put A into equation (6):
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So the derivatives of A have a discontinuity. But which ones? Let’s expand
A x B =nx (ﬁx/f) :niﬁAi—(ﬁ-ﬁ)ﬁ
Then
A x (él - 52) =V (A — Ay) — (n : 6) (/Yl - /YQ) — ek (10)

But we have shown that each component of A is continuous at the surface. So
the components of .

\Y (Ai,l - Ai,2)
parallel to the surface must be zero. Thus only the normal derivatives remain.
Then the normal component of equation (10) is identically zero, and the only
non-zero components of the boundary condition are the tangential components

(ﬁ : ﬁ) (A’l . A’Q)m — ok (11)

Now this is neat. Each component of A satisfies Laplace’s equation with
Neumann boundary conditions, and so it must have a unique solution, as we
already proved for V.

Magnetic scalar potential L

When we have the special case of j = 0, V x B = 0 and we may use a
magnetic scalar potenial ®mag. This can be useful if the current is confined to
lines or sheets, because we can create a nice boundary-value problem for ® 4.

B=—V®nag
V- B=0= Vs =0 (12)
Bhormal continuous = 7 - @@mag is continuous (13)
i (By—By) = oK = i x V (Pmagt — Bmega) = —K (14)

Let’s use these boundary conditions to find the potential due to a spinning
spherical shell of charge. The current is confined to the surface and has the
value . R
K =00 =0d X ¥=owasinf¢
where in the last expression put the z—axis along the rotation axis. We will
take o to be a constant. The equation for ®,,4 in the region entirely inside (or

entirely outside) the sphere is (1 with j = 0)

V2®mag =0
and because we have azimuthal symmetry, the solution is of the form
i, = ZClrlPl (cosb)
=1
e’} Dl
Doyt = ;_rlJrlPl (cosb)



We have omitted the [ = 0 term because it contributes zero field inside, and we
know there can be no monopole term outside. What else do we know? At the
boundary, from (13)

8':I)mag,out . 8@mag,in I
or r=a or r=a
ZZCZGZJPI(COSQ) = 72 (1+1) z+2PZ (cos®)
=1 =1
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C, = T >0 (15)
and from (14).
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The last equation is automatically satisfied. Thus the final condition we need
to satisfy is

—~ D; 0 .
Zaz+2 agpl (cos 0) — cha —Pz (cos) = —pgoawsiné
=1

Now since P; (cosf) = cosf and <& cosf = —sin 0, the first term in the sum is

D
- <—1 — C’1> sin 0
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so we may satisfy the boundary conditons by taking
— - (1 = pyoaw

and all the other C;, D; = 0. Then equation (15) gives
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and then o aw
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So o
® - g,uoaawrcosé’ inside
mag +ppoa’ws cos @ outside
giving a field

. Spgoaw? inside
B= fooawis <2cos0 7 + sin 0 é) outside



Thus the field inside is uniform and the field outside is a pure dipole field. The

dipole moment is
r
m==—0a W
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The dimensions of m are

charge (Iength)4 _ charge
area time  time

x (length)” = current x area

which is correct. You should verify that you get the same m by summing current
loops.

Compare this solution with Gri¢ths’ example 5.11. Which method do you
think is easier?



