
The Biot-Savart Law
This semester we want to look at fields that are constant in time. That

means that we should not attempt to consider the magnetic field due to a
single charge, because only moving charges produce magnetic fields (just as only
moving charges experience magnetic force). The simplest source of magnetic
field is steady current, current that does not change in time, and the closest we
can come to a point source is a differential piece. The magnetic field produced
by a wire segment of length dc carrying current I at a point P is

d �B =
µ0
4π
I
d�c× r̂
r2

This law is actually a lot like Coulomb’s law. It’s an inverse square law, and it
depends on the vector �r that points from the wire to P. The new complication
is that the source is a vector, and so the Biot-Savart law involves the cross
product. That means that the magnetic field at P is perpendicular to both d�c
and r̂. The field produced by a long straight wire forms circles centered on the
wire.
To get the total �B we have to integrate over the whole source:

�B (�r) =
µ0
4π

I
d�c× R̂
R2

where now we describe the source point by the vector �r3, as we did for electric
fields, and the vector �R points from the source to P :

�R = �r − �r3

Let’s begin by finding the magnetic field due to a straight wire segment.

We put the y−axis along the wire in the direction of I, and the x−axis through
P, which is distance s from the wire. Model the wire as a collection of differential
elements d�c = dcŷ at position y3. Then

�R = sx̂− y3ŷ
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and

�B (P ) =
µ0
4π

y2

y1

I
dy3ŷ × (sx̂− y3ŷ)
s2 + (y3)2

3/2

=
µ0
4π

y2

y1

I
dy3s (−ẑ)
s2 + (y3)2

3/2

We integrate from one end of the wire to the other. Now I, s, and the unit
vector ẑ are independent of y3, so we can take them out of the integral:

�B (P ) = −µ0Is
4π

ẑ
dy3

s2 + (y3)2
3/2

To do the integral, we use a tangent substitution. Let tan θ = y3/s. Then sec2 θ
dθ = dy3/s.

�B (P ) = −µ0Is
4π

ẑ
θ2

θ1

s sec2 θdθ

s2 + s2 tan2 θ
3/2

= −µ0Is
2

4π
ẑ

θ2

θ1

sec2 θdθ

s3 [sec2 θ]3/2

= −µ0I
4πs

ẑ
θ2

θ1

cos θdθ

= −µ0I
4πs

ẑ (sin θ2 − sin θ1)

The angles θ1 and θ2 are shown in the diagram.
We have to be aware of several important facts if we want to use this expres-

sion correctly. First, we chose our y axis so that y increases in the direction of
I. That means that y2 is always bigger than y1, and also θ2 > θ1 as a result.
However, there are several possibilities:

1. y1 and y2 (and hence θ1 and θ2) may both be positive

2. y1 > 0 but y2 < 0 (and hence θ1 > 0 and θ2 < 0)

3. y1 and y2 (and hence θ1 and θ2) may both be negative

An infinitely long wire would be in case 2.

tan θ1 =
ytop end
s

→∞ as ytop end →∞

and thus
θ1 =

π

2
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while
tan θ2 =

ybottom end

s
→−∞ as ybottom end →−∞

so
θ2 = −π

2
and so

�Blong wire = −µ0I
4πs

ẑ [1− (−1)] = −µ0I
2πs

ẑ

Check the direction and convince yourself it is correct. Note that �B is indepen-
dent of y,and z as it must be due to the translational and rotational symmetry
of the system. Also note that the field decreases as 1/distance from the wire.
This is exactly the same dependence that we found for the electric field due to
an infinite line charge.
Aside. Now we are ready to look at an important system that is used to

define the current unit ampere. We have two infinitely long wires, each carrying
current I, and separated by distance s The one on the left produces a magnetic
field −µ0I2πs ẑ at the position of the one on the right. Thus the second wire
experiences a force

d�F = Idcŷ × −µ0I
2πs

ẑ = −µ0I
2

2πs
x̂ dc

on each segment dc. Thus there is a force per unit length

d�F

dc
= −µ0I

2

2πs
x̂

The second wire is attracted toward the first. Go through the analysis to con-
vince yourself that there is an equal and opposite force per unit length on the
wire on the left. The ampere is defined by measuring the force and adjusting
the current until the force/length is 2×10−7 N/m when the wire separation is
s = 1 m. The resulting current is 1 A by definition.
Now Griffiths claims that there is no electric force because the wires are

electrically neutral, but that’s wrong. In a normal lab situation, the system must
have some resistance, so let’s look at an idealized system with the two long wires
being superconductors, but the connectors at infinity having a resistance R.
Then we need a potential difference ∆V = IR between the two wires. This can
be accomplished if each carries a uniform line charge density ±λ. With origin on
the positively-charged wire and x−axis pointing toward the negatively-charged
wire, the electric field at a point between the wires is

�E =
λx̂

2πε0

1

x
+

1

s− x
The potential difference is then

∆V = �E · d�l = λ

2πε0

s−a

a

1

x
+

1

s− x dx =
λ

2πε0
[lnx− ln (s− x)]

IR =
λ

2πε0
2 ln

s− a
a
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where a is the radius of each wire. Thus

λ =
πε0IR

ln (s/a− 1)
The charge density λ → 0 as a → 0, but is not zero for a real wire. Then the
electric force on a segment of wire is

dF = Eλdl =
λ2

2πε0s
dl =

πε0IR

ln (s/a− 1)
2

dl

2πε0s

dF

dl
=

I2

2πs

π2ε0R2

[ln (s/a− 1)]2

So
Felec
Fmag

=
π2ε0R

2

µ0 [ln (s/a− 1)]2
Let’s put in some numbers. Let R = 1 Ω, s = 10 cm, a = 1 mm. Then we get

Felec
Fmag

= π2
(1 Ω)2 8.85× 10−12 F/m
4π × 10−7 N/A2 [ln 100− 1]2

=
π × 8.85× 10−12

(4× 10−7 ) (4.605 2− 1)2
Ω2F/m

N/A2

= 5.3× 10−6 Ω
2F/m

N/A2

Let’s check the units.
Ω =

V
A

and

F=
C
V

so
Ω2F/m

N/A2
=
V2

N
C

V ·m =
V ·C
N ·m =

J
J

Thus the ratio is dimensionless, as required.
The ratio is small, but is not zero! A resistance of kΩ instead of Ω would

make the ratio > 1.
Ampere’s Law
We have shown above that a long wire produces a magnetic field that curls

around the wire. If we choose a circular path that follows the field line, we have

C

�B · d�l =
2π

0

µ0I

2πs
sdθ = µ0I
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The result is independent of s. Now let’s generalize the result to a curve of
arbitrary shape. On such a curve

d�l = ds ŝ+ sdθ θ̂+ dz ẑ

and
�B · d�l = µ0I

2πs
θ̂ · ds ŝ+ sdθ θ̂ + dz ẑ =

µ0I

2π
dθ

Thus

C

�B · d�l =
C

µ0I

2π
dθ

If the curve surrounds the wire, then the limits are 0 to 2π, and we get µ0I, as
before. But if the wire is outside the curve, the limits go from some minimum
value θ1 to a maximum θ2 and back to θ1, giving zero as the result of the
integral. Now we can add as many wires as we like, to get the general rule
called Ampere’s Law:

C

�B · d�l = µ0 (total current through C)

Now let’s use the fact that I is the flux of �j.

C

�B · d�l = µ0
S

�j · n̂ dA (1)

which is the integral form of Ampere’s law. It is true generally for any �j, not
only currents in straight wires. As with Gauss’ law, this global statement is
useful as a tool for finding �B only in cases with sufficient symmetry: plane,
spherical or cylindrical symmetry, but also toroids (See G Ex 5.10). See LB
page 910 for the method.
Suppose we have current confined to a thin sheet of conductor in the x− y

plane. The current is described by a surface current K (units A/m).

�K = �j dz = Kx̂

If we model the plane as a collection of wires, each of thickness dy and carrying
current Kdy, we can see that the magnetic field above the plane at z > 0 will
be the superposition of fields circulating around the wires. This superposition
gives a field in the −y−direction, and parallel to the sheet. Below the sheet,
the field is reversed. We choose an Amperian curve that is a rectangle of length
L and width 2h, lying parallel to the x− z plane. By placing it symmetrically
about the sheet we guarantee that the magnitude of B on the top side equals
the magnitude on the bottom side.
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Then integrating around this curve, we have

C

�B · d�l = 2BL = µ0 �j · n̂ dA = µ0KL

Thus

B = µ0
K

2

The result is independent of L, as it must be, but it is also independent of h.
We saw a similar result for the electric field due to a charged sheet. Finally

�B = −µ0
K

2
ŷ above the sheet

= +µ0
K

2
ŷ below the sheet

This result is important in understanding how the Earth’smagnetic field can
shield us from charged particles arriving from the sun. Charged particles spiral
around magnetic field lines. When paricles from the sun reach the Earth’s field,
the electrons spiral one way and the ions the other. Both signs of charge create
a current sheet of the same sign, and that sheet acts to reduce the field outside
the sheet and double it inside. The net result is that the Earth;s field is cut off
at the magnetopause. This boundary prevents particles from plunging directly
to the Earth’s surface.
Finally we can use Ampere’s law to get a local result. We use Stokes’ theorem

to modify the LHS

S

�∇× �B · n̂ dA = µ0
S

�j · n̂ dA

Now this is true for absolutely any curve C and any surface S spanning the
curve, so

�∇× �B = µ0�j (2)

As with the curl equation for �E, this result is true only for static fields.
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We asserted earlier that �∇ · �B = 0 because there are no magnetic charges.
Now let’s verify this starting with the Biot-Savart law.First we re-write the B-S
law in terms of �j. A general current distribution may be written as a collection
of current loops, each having cross sectional area dA3.

�B (�r) =
µ0
4π

all loops

I
d�c× R̂
R2

=
µ0
4π

all loops

jdA3
d�c× R̂
R2

=
µ0
4π

all loops

dA3dc
�j × R̂
R2

�B (�r) =
µ0
4π V

�j (�r3)× R̂
R2

dτ 3 (3)

Then

�∇ · �B (�r) = �∇ · µ0
4π V

�j (�r3)× R̂
R2

dτ 3

Now the grad operator differentiates the unprimed coordinates, so we may move
it inside the integral.

�∇ · �B (�r) =
µ0
4π V

�∇ ·
�j (�r3)× R̂

R2
dτ 3

=
µ0
4π V

�j (�r3) · �∇× R̂

R2
− R̂

R2
· �∇×�j (�r3) dτ 3

But �∇×�j (�r3) ≡ 0, so

�∇ · �B (�r) = µ0
4π V

�j (�r3) · �∇× R̂

R2
dτ 3

Now
R̂

R2
= −�∇ 1

R

and the curl of any gradient is zero, so �∇ · �B = 0, as required.
Maxwell’s equations for static fields
We now have all four Maxwell equations, limited to the case of static fields.

They are
�∇ · �E = ρ

ε0
; �∇ · �B = 0

�∇× �E = 0; �∇× �B = µ0�j

Here we have grouped them according to the differential operation that appears
(divergence or curl). But we could also group them this way:
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�∇× �E = 0; �∇ · �B = 0
�∇ · �E = ρ

ε0
; �∇× �B = µ0�j

where the top two are homogeneous equations (RHS=0) and the bottom two
display the sources ρ and �j of the fields. To these we add the force law:

�F = q �E + �v × �B

and charge conservation
∂ρ

∂t
+ �∇ ·�j = 0

These equations illustrate the similarities and differences between �E and �B.
The two source-free equations indicate the lack of magnetic charge— there are
(essentially) no magnetic monopoles. The fact that �E has a non-zero divergence
means that �E field lines radiate outward from positive charge and into negative
charge. Because �B has a non-zero curl, the field lines wrap around the current
sources. Since �∇ · �B = 0, magnetic field lines do not begin or end— they form
closed loops (which may extend to infinity before they close).
A fact that does not emerge obviously from these equations is that magnetic

forces are usually much weaker than electric forces, unless we contrive situations
that make the electric force zero, or almost zero, as is usually the case with
currents in wires, or permanent magnets. This is much more apparent in the
cgs Gaussian unit system, in which the force law is

�F = q �E +
�v

c
× �B

In this unit system �E and �B have the same units, and we can see that for compa-
rable fields we’d need relativistic speeds (v ∼ c) to make the forces comparable.
(See LB pg 914 for an example.)
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