
Physics 360

Notes on Griffths - pluses and minuses
No textbook is perfect, and Griffiths is no exception. The major plus is that

it is pretty readable. For minuses, see below.
Much of what G says about the del operator applies only in Cartesian coor-

dinates. For example, we may only think of del as a vector such that �∇ · �u is
the dot product of �∇ and �u if �∇ is expressed in Cartesian coordinates.
Page 27, The unit vectors in Cartesian coordinates are constants and may

be pulled out of the integral, but unit vectors in other coordinate systems are
not constants! For example, r̂ may not be pulled out of an integral.
Unit vectors are written as x̂, ŷ, ẑ not ı̂, ĵ, k̂. This is consistent with what

we do in every other coordinate system, such as r̂, θ̂, φ̂ in spherical coordinates.
(I regard this as a plus.)
G is often sloppy in writing vectors— experts can get away with things that

beginners cannot because they know where they are going. But it’s a bad
habit. Don’t be sloppy! Always write the vector sign, and be sure that there
is a vector on both sides of an equals sign or neither. By convention, writing
a vector without its vector sign means the magnitude of the vector: v ≡ |�v| .
If you want to write the component, label it precisely, eg vx or vr, for example.
Components have signs that indicate the direction of the vector; magnitudes
are always positive.
G is also sloppy about explaining where results come from. Results of

complex integrals are sometimes just thrown down with no explanation. In your
homework and exams, you should either (a) do the integral yourself, showing all
the steps, or (b) look it up, and give the complete reference to where you found
the result, and what substitutions have to be made. (For example, if you haveR
1
rdr but the table has

R
1
xdx, you will need to say that you are using result

N.mm from Book X with x = r.) (a) is definitely preferred, because you will
get better and better at doing integrals if you practice them, and in the long
run it will save you time as well has help to develop your intuition. But go
with (b) if the integral is really hard, and the homework is due in 10 minutes!
There are also a few Physics errors. I will point these out as we go along.
So let’s get going!
Physics is a set of conceptual ideas that we express in mathematical form

in order to solve problems. To understand physics well we have to use three
different and equally important languages: English, pictures, and mathematics.
Your solutions should contain adequate amounts of all three.
The subject of this course is electricity and magnetism. In the 20th century

we learned that the fundamental forces of physics are:

1. Gravitational force

2. Strong or color force

3. Electroweak force
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(1) is studied using Newton’s laws, or, for strong fields, Einstein’s equations.
(2) is studied using advanced mathematical concepts such as groups.
(3) is the unification of electromagnetic theory and the weak nuclear force.

Electromagnetic theory is the first unified field theory: the unification of electric
and magnetic field theory, and is the subject of our study this semester and next
(in 460).
In Physics 230, we studied electric fields first, then magnetic fields. This

is traditional, because the mathematics is a bit easier for electric fields, and
we shall follow that plan in 360 too. But we have to remember that both are
different aspects of one electromagnetic field. In Physics 230, we started with
the fields produced by a single source element (eg a point charge) and built up
the field due due a distribution of sources using the principle of superposition.
We can do this because the relation of the fields to their sources is linear. This
is an experimental fact. The electric field is a vector so when we add the fields
due to different sources we are always doing vector addition.
Fundamental principles and definitions.
Charge is conserved. We believe that the total charge of the universe is

exactly zero. Thus the only way to get a net charge Q in one place is to have
a corresponding net charge −Q somewhere else. Opposite charges attract, so
these separated charges are always trying to get back together. This is the
primary reason why electrostatic forces are not very obvious in everyday life, or
on the large scales of astronomy..
Charge is quantized and appears in units of e/3, but we are doing classical

theory this semester, so for the most part our charges will consist of so many
fundamental units that we can consider charge to be a continuous quantity.
We start with the definition of electric field. We place a test charge q at

point P and measure the electric force �F acting on q. Then the electric field at
P is

�E = lim
q→0

�F

q

From Coulomb’s law (another experimental fact) we find that;
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The electric field produced by a point charge Q is

�E (P ) =
kQ

r2
r̂

where �r is the vector with its tail on Q and its head at point P.
A simple example.
Suppose we have a point charge Q =1μC at the origin and a second charge

−2Q at point P1 with coordinates (1 mm, 2 mm, 3 mm). What is the electric
field at an arbitrary point P with coordinates (x, y, z)?

Given any problem, the solution consists of the following steps.
MODEL First determine the important physicical principles that govern the

behavior of the system.
Here the principle that we need is Coulomb’s Law. We are also going

to use the geometry of flat space, as expressed in the Pythagorean theorem.
That seems so obvious that you probably wouldn’t think of it as a separate
principal. The more physics you learn, the more the first bits you learned seem
this "obvious", but we must be careful not to get complacent! We must be
especially careful not to think that things are obvious when they are actually
not even true!
A sketch of the field line diagram will help us understand the field. The

net charge of the system is Q − 2Q = −Q Using 4 lines per Q, 4 lines leave
the +Q charge and g to the −Q charge, while 4 come in from infinity to the
−Q charge. We have to have spherical symmetry at a very great distance from
both charges, or very close to either one. (You can download a program from
my Physics 230 web site that will allow you to draw a pretty accurate diagram
in a plane for this system.).
SETUP Now we are going to decide how to solve the problem, and get to

the point where all we have left to do is some math. Let’s start with a diagram.
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The diagram shows the two charges and the field produced by each. Notice
that �E2 points toward the negative charge. Now we can calculate the field using
Coulomb’s law:

�E (P ) =
kq

r2
r̂ = kq

�r

r3

The second form will be easiest to use here, since we will have to calculate r̂ as
�r/r. We must be very clear as to what the symbol "r" means in this formula.
It is the vector with its tail at the charge and its head at point P. For the
first charge, Q, which is at the origin, �r is the position vector of point P :
�r = xx̂ + yŷ + zẑ and r =

p
x2 + y2 + z2. For the second charge, −2Q, the

vector �r2 has components (x− 1, y− 2, z− 3) where all lengths are measured in
mm. , Then r2 =

q
(x− 1)2 + (y − 2)2 + (z − 3)2. Thus

�E1 =
kQ

(x2 + y2 + z2)3/2
(xx̂+ yŷ + zẑ)

and

�E2 = − 2kQh
(x− 1)2 + (y − 2)2 + (z − 3)2

i3/2 [(x− 1) x̂+ (y − 2) ŷ + (z − 3) ẑ]
Finally, using the principle of superposition, we have

�E = �E1 + �E2
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SOLVE Now we are ready to do the addition.

�E =
kQ

(x2 + y2 + z2)
3/2

(xx̂+ yŷ + zẑ)− 2kQh
(x− 1)2 + (y − 2)2 + (z − 3)2

i3/2 ((x− 1) x̂+ (y − 2) ŷ + (z − 3) ẑ)
This is pretty ugly. Let’s do it one component at a time:

Ex = kQ

⎧⎪⎨⎪⎩ x

(x2 + y2 + z2)
3/2
− 2 (x− 1)h

(x− 1)2 + (y − 2)2 + (z − 3)2
i3/2

⎫⎪⎬⎪⎭
It’s not going to be possible to make this look much nicer. We should always
try to simplify our answer as much as possible, but here I don’t see how we can
do much more. The other components will look similar.
ANALYZE. This is a critical step.
Does the answer have the right physical dimensions? Let’s check. The

quantity in the curly brackets is length/(length)3 = 1/(length)2, so the answer

is of the form k
³
charge/length2

´
which is correct.

Does the answer have the right value in special cases? Well, if we let x get
very big, let’s see what we get. The relevant physical value to compare with is
the 1 mm separation (along the x−axis) of the two charges. So let xÀ 1 mm.
Then we rewrite the second fraction like this:

2 (x− 1)h
(x− 1)2 + (y − 2)2 + (z − 3)2

i3/2 =
2x
¡
1− 1

x

¢
x3
h¡
1− 1

x

¢2
+
¡
y−2
x

¢2
+
¡
z−3
x

¢2i3/2
=

2

x2

¡
1− 1

x

¢h¡
1− 1

x

¢2
+
¡
y−2
x

¢2
+
¡
z−3
x

¢2i3/2
Now let’s also suppose that x À y, z. In this limit the quantity multiplying
2/x2 → 1 and we get

Ex = kQ

½
1

x2
− 2

x2

¾
= −kQ

x2

The y and z components are much smaller:

Ey

Ex
∼ y

x
¿ 1

Our result is the electric field on the x−axis due to a point charge −Q at the
origin. This is a particular example of a general rule:
RULE 1

The electric field due to any charge distribution with net charge Q,
measured at a very great distance from it, equals the electric field
due to a point charge Q located within the charge distribution.
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Now let’s set y = z = 0, keeping x À 1 mm, and see what the first order
correction is.

Ex = kQ

⎧⎪⎨⎪⎩ 1

x2
− 2

x2

¡
1− 1

x

¢h¡
1− 1

x

¢2
+
¡−2
x

¢2
+
¡−3
x

¢2i3/2
⎫⎪⎬⎪⎭

= kQ

½
1

x2
− 2

x2
f

¾
We’re going to keep terms of order 1/x3 but drop terms of order 1/x4 and higher
powers of 1/x. So in the term f multiplying 2/x2 we keep terms of order 1/x.

f =

¡
1− 1

x

¢h¡
1− 1

x

¢2
+
¡−2
x

¢2
+
¡−3
x

¢2i3/2 =
¡
1− 1

x

¢¡
1− 2

x

¢3/2 +O ¡1/x2¢
Now we use the binomial theorem to expand the denominatorµ

1− 2
x

¶−3/2
= 1 +

µ
−3
2

¶µ−2
x

¶
+O

µ
1

x

¶2
Thus

f =

µ
1− 1

x

¶µ
1 +

3

x

¶
= 1 +

2

x
− 3

x2

But we have already dropped terms of order 1/x2 in f, so here we must drop
the 3/x2 term to be consistent. (You can make some very serious errors by
using inconsistent levels of approximation!) Putting it all together, we have

Ex = kQ

½
1

x2
− 2

x2

µ
1 +

2

x

¶¾
= kQ

½
− 1
x2
− 4

x3

¾
The first term is the "point source" term that we had before. The second term
results from the fact that there are actually two separate charges. It is a dipole
field. (See LB $24.5 The field on the axis of the dipole is

�E =
2k�p

x3

¶
We model our charge distribution as a point charge −Q plus a dipole with
charges −Q at x = 1 mm and Q at the origin. The dipole moment �p points
from the negative charge to the positive charge, so in this case its x−component
is negative.

px = Q× (−1 mm)
This gives a dipole electric field on the x-axis of

Ex = −2kQ
x3
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But wait! We are off by a factor 2! That’s because our point charge −Q is
not exactly at the origin, but displaced by a distance of 1 mm to the right. So
it contributes an extra dipole moment of p = −Q (1 mm) . We’ll learn more
about how to compute dipole moments in Chapter 3 (§3.4).
Just to round off the discussion, let’s find the field on the y−axis (x = z = 0)

with y À 3 mm.

�E (0, y, 0) =
kQy

(y2)3/2
ŷ − 2kQh

(−1)2 + (y − 2)2 + (−3)2
i3/2 (−x̂+ (y − 2) ŷ − 3ẑ)

=
kQ

y2

⎛⎜⎜⎜⎝ŷ − 2
³
− 1

y x̂+
³
1− 2

y

´
ŷ − 3

y ẑ
´

∙³
− 1

y

´2
+
³
1− 2

y

´2
+
³
− 3

y

´2¸3/2
⎞⎟⎟⎟⎠

As before, let’s drop terms in 1/y2 and higher inside the parentheses.

�E (0, y, 0) =
kQ

y2

⎛⎜⎝ŷ − 2
³
− 1

y x̂+
³
1− 2

y

´
ŷ − 3

y ẑ
´

³
1− 4

y

´3/2
⎞⎟⎠

=
kQ

y2

½
ŷ − 2

∙µ
−1
y
x̂+

µ
1− 2

y

¶
ŷ − 3

y
ẑ

¶¸µ
1 +

3

y

¶¾
=

kQ

y2

½
2

y
x̂+ ŷ

µ
1− 2− 2

y

¶
+
6

y
ẑ

¾
= −kQ

y2
ŷ +

kQ

y3
{2x̂− 2ŷ + 6ẑ}

The leading term is the point charge field, as expected, and the correction is a
dipole field, due to all three components of our dipole.. We’ll come back to
the details of this when we study chapter 3.
Example 2. Find the electric field at a point on the y−axis due to a

filament of length 2c that stretches from x = −c to x = c and has a uniform
linear charge density λ.

Again we use superposition, but we start bymodelling the line as a collection
of differential elements, each of which we treat as a point charge.to which we
can apply Coulomb’s law.
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Setup: A typical differential element is at coordinate x, with length dx and
charge λdx = dq It prduces an electric field at P

d�E = k
dq

r2
r̂

that has both x and y components, as shown in the diagram. Now we can
simplify our calculation by noting that our filament has mirror symmetry about
the y − z plane. Thus we can find another element at coordinate −x, the
"mirror image" of our first element, that produces an electric field of the same
magnitude at P. This second field has an identical y−component but the exact
opposite x−component, so when we add them together the net result is a field
in the y−direction. Thus as we sum up the contributions from all our elements,
we find that the total electric field must be in the y−direction. It is important
that we express the distance r in terms of the variable x. The electric field due
to the pair of elements shown is

dEy (P ) = 2
kλdx

(x2 + y2)
cos θ

Be careful here! x is the x-coordinate of our differential element (the one on the
right) while y is the y−coordinate of the point P. It would be better to give
them labels that emphasize this difference, so we’ll use x0 rather than x. From
the diagram

cos θ =
y

r

Thus

dEy (P ) = 2
kλy dx0h

(x0)2 + y2
i3/2

Now we sum the elements. The differential dx0 tells us what our integration
variable will be. The limits of the integral are 0 to l, since we are summing
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over pairs of elements, labelled by the x−coordinate of the element on the right
in each pair.
Solve:

Ey (0, y, 0) =

Z c

0

2
kλy dx0h

(x0)2 + y2
i3/2

Now k, λ and y are all independent of x0, so we may remove them from the
integral.

Ey (0, y, 0) = 2kλy

Z c

0

dx0h
(x0)2 + y2

i3/2
To do the integral, we use the tangent substitution. Let x0 = y tan θ. (Note
that this angle is actually the same θ marked in the diagram.) Then (x0)2+y2 =
y2
¡
1 + tan2 θ

¢
= y2 sec2 θ, and so

Ey = 2kλy

Z tan−1(c/y)

0

y sec2 θdθ

y3 sec3 θ

=
2kλ

y

Z tan−1(c/y)

0

cos θ dθ

=
2kλ

y
sin θ|tan−1(c/y)0 (1)

To evaluate the sine, note that

sin θ = cos θ tan θ =
tan θ√
sec2 θ

=
tan θ√
1 + tan2 θ

Thus

Ey (0, y, 0) =
2kλ

y

c/yq
1 + (c/y)

2
(2)

=
2kλ

y

cp
y2 + c2

(3)

Analyze: First note that our result has the right dimensions. Looking at
the result in the form labelled (2), we see that the factor multiplying 2kλ/y
is dimensionless, because c/y is a dimensionless number. The linear charge
density λ is charge/length, so kλ/y is k×charge/length2, as required.
Now let’s look at the field a long way from the line, so that y À c. Then

in (2) we neglect the term (c/y)
2 compared with the one in the denominator.

The result is

Ey = k
2λc

y2
p
1 + c2/y2

' k
2λc

y2
= k

Q

y2

This is the electric field due to a point charge Q = 2λc at the origin. Here is
another example of RULE 1 that we found above.
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Now let’s see what happens if we let our line become infinitely long. The
easiest way to get the result is to go back to result (1) and let l→∞. We note
that limw→∞ tan−1 (w) = π/2, and sinπ/2 = 1, so we have immediately

Ey =
2kλ

y
(infinite line)

From (3) we can see that this is also the result when we are very close to a finite
line (y ¿ c).
We have found more than you might imagine. Notice that our system has

rotational symmetry about the x−axis in addition to the mirror symmetry we
already exploited. Thus we have found the electric field anywhere in the y − z
plane, and we may write the result as

�E =
2kλ

s

c/sq
1 + (c/s)2

r̂

where s is the radial coordinate in a cylindrical coordinate system with z-axis
along the line of the charge.
Now let’s compare the three results (3), (??) and (??). We plot the dimen-

sionless field variable e = Ey/ (2kλ/c) versus the dimensionless distance variable
u = y/c. Then the three expressions are

Exact (black line): e =
1

u
√
1 + u2

Near (red line) : e =
1

u

Far (green line) : e =
1

u2

0

2

4

6

8

10

12

14

e

0.5 1 1.5 2 2.5 3u

The "near" result works very well for u . 0.3 while the "far" result works well
for u & 1.5.
Example 3. Now what if we have two infinite lines, with linear charge

densities λ and −λ?. What is the electric field produced by these lines at a
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point in the plane midway between them?

MODEL We use the resut we have already found for an infinite line, and
add the two fields, as shown in the diagram.
SETUP Putting the z−axis along the line joining the two infinite filaments,

and y axis along the bisector, with point P having coordinates (0, y) and the
separation of the lines being 2L, we can see that the y−components cancel while
the x−components add, to give
SOLVE

�E = 2
2kλ

y
cos θ x̂

=
4kλ

y

Lp
L2 + y2

x̂

ANALYZE for y À L, we get

�E → 4kλ

y2
x̂

This is the result for a line dipole. Let’s summarize what we have learned so
far about how electric fields vary with distance from the source.

source one two (dipole)
point 1/distance2 1/distance3

line 1/distance 1/distance2

We’ll finish here by writing the expression for �E as an integral in its most
general form. We label the point P at which we want to find �E with the position
vector �r with respect to some origin O, and our differential element with position
vector �r0. Then the vector pointing from the element dq = ρ (�r0) dτ 0 to P is

�R = �r − �r0
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and the electric field at P produced by the element is

d�E (�r) = k
dq

R2
R̂ = k

ρ (�r0) dτ 0

|�r − �r0|3 (�r − �r0)

and then we sum over all the elements by integrating over the primed coordi-
nates:

�E (�r) =

Z
d�E = k

Z
V

ρ (�r0) (�r − �r0)
|�r − �r0|3 dτ 0

The volume V is all space, but in practice we can limit it to the volume where
ρ is not zero.
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